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Abstract
We aim to clarify confusions in the literature as to whether or not dynamical
density functional theories for the one-body density of a classical Brownian
fluid should contain a stochastic noise term. We point out that a stochastic as
well as a deterministic equation of motion for the density distribution can be
justified, depending on how the fluid one-body density is defined—i.e. whether
it is an ensemble averaged density distribution or a spatially and/or temporally
coarse grained density distribution.

PACS numbers: 05.10.Gg, 61.20.Lc, 05.70.Ln

1. Introduction

In equilibrium statistical mechanics, one can prove that the grand canonical free energy of the
system can be written as a functional of the one-body density only [1]. The density distribution,
which minimizes the grand potential functional, is the equilibrium density distribution. This
statement is the basis of the equilibrium density functional theory for classical fluids which
has been used with great success to describe a variety of inhomogeneous fluid phenomena
[2]. Out of equilibrium there is no such rigorous principle. However, macroscopically one
can find phenomenological equations for the time evolution which are based on macroscopic
quantities only, e.g. the diffusion equation, the heat transport equation and the Navier–Stokes
equations for hydrodynamics.

In perhaps one of the most simple microscopic cases, a system of interacting Brownian
particles, a number of equations for the time evolution of the particle density have been
proposed which aim to incorporate results from equilibrium density functional theory. These
equations are usually referred to as dynamical density functional theory (DDFT) or time-
dependent density functional theory. Most of the equations take a rather similar form but
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Figure 1. Flow chart outlining the various possible routes for deriving a DDFT for pairwise
interacting Brownian particles. The starting point for all attempts to derive a DDFT is equation (1)
(thick dashed line box at the top). The end point is either a theory for the coarse grained density
ρ̄(r, t) (Langevin or Fokker–Planck equation, thick solid outlined boxes at the bottom) or, for
the ensemble averaged density ρ(r, t), a deterministic equation, (thick solid outlined box on
right). The Langevin and Fokker–Planck equation for the microscopic density ρ̂(r, t) are only
intermediate results (dotted boxes). Steps 1, 2, 5, 8 and 9 are exact (in circles) whereas steps 3, 4,
6 and 7 involve approximations (in square boxes).

there has been some controversy as to whether the time evolution ought to be stochastic
[3–7] or deterministic [8–10] in nature. In [7] the authors attempt to address these issues.
However, we believe further clarifications are necessary. The reason for the controversy is
that one has to state precisely what type of density distribution one is talking about, namely
whether one speaks of the instantaneous density ρ̂(r, t) at time t, an ensemble averaged density
ρ(r, t), or a spatially and/or temporally coarse grained density ρ̄(r, t). We will give proper
definitions for these densities later. The time evolution equation for ρ̂(r, t) is discussed in
[5–8], and for Brownian particles this is, of course, a stochastic equation. ρ(r, t) results
from taking an ensemble average over the stochastic noise and is therefore uniquely valued
at time t; the equation governing its dynamics must therefore be deterministic—this is the
approach in [8–10]. The equation governing the dynamics of ρ̄(r, t), the coarse grained
density, will, of course, still contain a noise term with the amplitude of this term dependent on
the degree of coarse graining. The main objective of this paper is to clarify the relationships
between these three approaches and to discuss the similarities and differences. In order
to visualize better the connections between the DDFTs for ρ̂(r, t), ρ(r, t) and ρ̄(r, t), we
employ the flow chart in figure 1.

This paper proceeds as follows: in section 2, we formulate the dynamics of a system of
interacting Brownian particles. We derive a deterministic DDFT for the ensemble (or noise)
averaged density in section 3. In section 4, we formulate the stochastic DDFT for the coarse
grained density and finally, in section 5, we discuss the results.
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2. Brownian dynamics of interacting particles

The starting point for our considerations is the Langevin equation for a system of N identical
Brownian particles with positions {ri (t)}i=1,...,N (see the dashed box in figure 1) in the
(overdamped) high friction limit. The particles interact pairwise via the (pair) potential
V (r). In addition, there is a one-body external potential �(ri , t). This equation reads

dri

dt
=

∑
j=1,...,N

F (ri − rj ) + G(ri , t) + ηi (t), (1)

where F (ri − rj ) = −∇iV (|ri − rj |) is the interaction force between a pair of particles, and
G(ri , t) = −∇i�(ri , t) is the external force on particle i. The uncorrelated Gaussian random
force on each particle {ηi (t)}i=1,...,N is fully characterized by

〈ηi (t)〉 = 0 and
〈
η�

i (t)η
m
j (t ′)

〉 = 2T δij δ
�mδ(t − t ′). (2)

The particles are labelled with lower roman indices, and the spatial directions (i.e., x, y and z

in three dimensions) are labelled with upper indices. A possible prefactor (mobility constant)
in front of the deterministic part of (1) can be eliminated via the Einstein relation and a
corresponding rescaling of time. T is the temperature. Note that the noise term in (1) is
additive, i.e. it does not have a prefactor which depends on the particle position. In this case,
the Ito and the Stratonovich stochastic calculus are equivalent [11].

In the next step, we define the instantaneous microscopic density ρ̂(r, t; {ri (t)}) =∑N
i=1 δ(ri (t) − r). This density depends implicitly on the actual positions of all particles

{ri (t)} and it should be considered a density ‘operator’ rather than a measurable particle
density. Using Ito stochastic calculus, one can show that the time evolution of this sum of
delta functions is given by (see [8, equation (8)] or [5, equation (17)]):

∂ρ̂(r, t)

∂t
= ∇ ·

[
−ρ̂(r, t)G(r, t) − ρ̂(r, t)

∫
ρ̂(r′, t)F (r − r′) d3r ′

+ T ∇ρ̂(r, t) +
√

ρ̂(r, t)ξ(r, t)

]
, (3)

i.e., an equation which, at a first glance, does not depend upon the individual particle
positions. This step corresponds to path 2, which leads to the left dotted box in figure 1.
The random forces on the particles ηi (t) have been replaced by a Gaussian random field
ξ(r, t) with

〈ξ(r, t)〉 = 0 and 〈ξ�(r, t)ξm(r′, t ′)〉 = 2T δ�mδ(r − r′)δ(t − t ′). (4)

Introducing the ‘energy’ functional H[ρ̂] [7]

H[ρ̂] =
∫ {

T ρ̂(r, t)[ln �3ρ̂(r, t) − 1] + ρ̂(r, t)�(r, t)

+
1

2

∫
ρ̂(r, t)V (|r − r′|)ρ̂(r′, t) d3r ′

}
d3r, (5)

where � is the de Broglie wavelength, (3) can be written as

∂ρ̂(r, t)

∂t
= ∇ ·

[
ρ̂(r, t)∇ δH[ρ̂]

δρ̂(r, t)
+

√
ρ̂(r, t)ξ(r, t)

]
. (6)

In contrast to the noise in equation (1), the noise in (6) is multiplicative. However, as shown
in [12], for a conserved multiplicative noise, Ito and Stratonovich calculus are equivalent and
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therefore (6), the Langevin equation for ρ̂(r, t), should have the same form when obtained by
Stratonovich calculus.

We denote the probability density for finding the particles in the system at time t with the
positions {r�}�=1,...,N by w(r1, . . . , rN, t). The time evolution of this probability is given by
the Fokker–Planck equation for (1), namely

∂w({r�}, t)
∂t

= −
∑

i=1,...,N

∇i ·

 ∑

j=1,...,N

F (ri − rj ) + G(ri , t) − T ∇i


 w({r�}, t). (7)

In figure 1 the derivation of (7) is denoted by path 1. Equation (7) is also referred to as
the Smoluchowski equation, namely the drift–diffusion equation for a many-particle system
[11, 10].

However, we are more interested in the particle density distribution, rather than in the
positions of the individual particles. The probability of finding the system in a configuration
with the density ρ(r, t) is given by

W [ρ] =
∫

w({r�}, t)δ [ρ(r, t) − ρ̂(r, t; {ri})] d3r1 · · · d3rN . (8)

ρ̂(r, t; {ri}) is a sum of N δ-functions and therefore, from the above definition, W [ρ] can
only be nonzero when ρ(r, t) is also a sum of exactly N δ-functions. In order to make a clear
distinction between smooth densities and spiky sums of delta functions, we will keep a hat
on the argument of W . The time evolution for W [ρ̂], which in fact is the Fokker–Planck
equation corresponding to (6), is given by [7] (see also [13] or appendix 8 in [14]):

∂W [ρ̂]

∂t
= −

∫
δ

δρ̂(r, t)

{
∇ · ρ̂(r, t)∇

[
T

δ

δρ̂(r, t)
+

δH[ρ̂]

δρ̂(r, t)

]
W [ρ̂]

}
d3r (9)

with the functional H[ρ̂] as given in (5). The derivation of (9) from the Langevin
equation (6) is path 5 connecting the two dotted boxes in figure 1. Equivalently, one could
also obtain (9) via a change of variables from {ri}i=1,...,N in (7) to ρ̂(r, t); this is path 9
in figure 1. The equilibrium distribution corresponding to (9) is given by W(eq)[ρ̂] ∝
exp

[− 1
T
(H[ρ̂] + µρ̂)

]
with an arbitrary chemical potential µ. The freedom of choice for

µ comes from the fact that (3) has the form of a conservation law.
Equation (6) together with equation (5) is a DDFT for ρ̂(r, t), i.e. an equation of motion

for the instantaneous microscopic density. However, although equation (6) is written in terms
of ρ̂(r, t), this sum of delta functions contains the exact positions of all particles (modulo
permutations), and the solution of (6) is formally equivalent to integrating (1)—see also
the appendix in [15]. Generally, one is not interested in the individual trajectories of the
particles, rather in the time evolution of quantities (in particular the fluid density) averaged
over many realizations of the noise or, alternatively, in the evolution of coarse grained
quantities.

3. Ensemble averaged density

We define the ensemble averaged density as the density ρ̂(r, t) averaged over many solutions
of (3) with equal initial conditions but different realizations of the noise term ξ(r, t), i.e.

ρ(r, t) =
∫

ρ̂(r, t; {ri})w({ri}, t) d3r1 · · · d3rN = 〈ρ̂(r, t)〉. (10)

In other words, in order to measure ρ(r, t) one solves (3) many times for different
realizations of the noise ξ(r, t) and averages the result at each time t. Since the particles
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are indistinguishable, w({ri}, t) is symmetric with respect to permutations of particles and
therefore ρ(r, t) = N

∫
w(r, r2, . . . , rN, t) d3r2 · · · d3rN . We can obtain the time evolution

of ρ(r, t) by integrating out N − 1 degrees of freedom in (7) to obtain [10, 16]:

∂ρ(r, t)

∂t
= −∇ ·

{
[G(r, t) − T ∇]ρ(r, t) +

∫
ρ(2)(r, r′, t)F (r − r′) d3r ′

}
, (11)

where

ρ(2)(r, r′, t) = N(N − 1)

∫
w(r, r′, r3, . . . , rN, t) d3r3 · · · d3rN , (12)

is the two-body density distribution function. We have assumed that surface terms which
appear in the partial integrations vanish. Here we see that for interacting particles, the time
evolution of the one-body density distribution ρ(r, t) depends upon the two-body density
distribution function, i.e. on the particle correlations in the system. In fact, (11) is the first
equation of a hierarchy of equations for the n-body density distribution functions (similar to
the BBGKY hierarchy) which one obtains by integrating out (N − n) degrees of freedom in
(7)—see [10].

So far, everything is exact, but in order to make use of this hierarchy one needs a
closure. One way, which is employed in [10], makes use of a result from equilibrium density
functional theory, in which there is an exact sum rule connecting the equilibrium two-body
density distribution function ρ(2)

eq (r, r′) to the gradient of the one-body direct correlation
function c(1)(r)

kBTρ(r)∇c(1)(r) =
∫

ρ(2)
eq (r, r′)F (r − r′) d3r ′. (13)

In equilibrium, c(1)(r) is the effective one-body potential due to interactions in the fluid and
is given by the functional derivative of Fex[ρ], the excess (over ideal) part of the Helmholtz
free energy functional, −kBT c(1)(r) = δFex[ρ]

δρ
[1, 10], and we obtain the following exact

result:

ρ(r)∇ δFex[ρ]

δρ(r)
= −

∫
ρ(2)

eq (r, r′)F (r − r′) d3r ′. (14)

Assuming this relation remains valid for the non-equilibrium fluid is equivalent to assuming
that the two-body correlations in the non-equilibrium fluid are the same as those in an
equilibrium fluid with the same one-body density profile [8, 10]. Within this approximation
we can write the time evolution equation (11) as [8, 10]:

∂ρ(r, t)

∂t
= ∇ ·

[
ρ(r, t)∇ δF[ρ(r, t)]

δρ(r, t)

]
, (15)

with the Helmholtz free energy functional4

F[ρ(r, t)] =
∫

ρ(r, t)[T (ln �3ρ(r, t) − 1) + �(r, t)] d3r + Fex[ρ(r, t)]. (16)

Since ρ(r, t) is a quantity averaged over the realizations of the noise, the time evolution
equation (15) is necessarily deterministic. Equation (15) was originally written down (without
derivation) by Evans [1]. The derivation of (15) presented in this section corresponds to
path 3 in figure 1. In [8] Marconi and Tarazona follow path 4 in figure 1, and (15) is derived
from (3) by performing an ensemble average. Note that (15) also remains valid when the
particles interact via multi-body potentials [10].

4 Note that the equilibrium excess Helmholtz free energy functional Fex[ρ] is only known exactly for the case
of hard-rods in one dimension [17] (see also [8]). In practice one can only obtain an approximation to the exact
functional. Some of the more recently derived functionals are rather sophisticated and very accurate [2].
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4. Coarse grained density

The ensemble averaged density ρ(r, t) discussed in section 3 is the quantity often considered
by theorists, but it is not the quantity one would measure by performing one individual
experiment (numerical or real). In order to measure the density as a function of time in an
experiment one must define a probe volume in space and a time window and count the number
of particles in that probe volume averaged over the time window. Since we intend to resolve
the atomistic structure of the fluid, the spatial resolution has to be very good. In other words,
we assume an experimental resolution function of the form K1(r, t) = K(t)δ(r) and then the
measured density is

ρ̄(r, t) =
∫

K(t − t ′)ρ̂(r, t ′) dt ′. (17)

For simplicity we assume further that K(t) has a compact support of size τ . Similarly,
we can define a two-particle probe, with a resolution function of the form K2(r, r′, t) =
K(t)δ(r)δ(r′). The two-particle distribution function that we measure is (cf equation (A6)
in [1])∫

K(t − t ′)ρ̂(r, t ′)ρ̂(r′, t ′) dt ′ =
∫

K(t − t ′)
∑
i �=j

δ(ri (t
′) − r)δ(rj (t

′) − r′) dt ′

+
∫

K(t − t ′)
∑

i

δ(ri (t
′) − r)δ(ri (t

′) − r′) dt ′

= ρ̄(2)(r, r′, t) + ρ̄(r, t)δ(r′ − r). (18)

This equation defines the coarse grained two-particle density distribution function,
ρ̄(2)(r, r′, t). When the fluid is in equilibrium, assuming ergodicity, and if the time window
of K(t) is large, as compared to the time the system needs to explore phase space locally, then
ρ̄(2)(r, r′) ≈ ρ(2)(r, r′); we therefore assume ρ̄(2)(r, r′, t) ≈ ρ(2)(r, r′, t). Here, locally
means on the scale of the correlation length and therefore this may not be true for long-ranged
correlations.

Using (3) together with (17) and (18), the time evolution of ρ̄(r, t) is given by

∂ρ̄(r, t)

∂t
= T ∇2ρ̄(r, t) − ∇ · ρ̄(r, t)G(r, t) − ∇ ·

∫
ρ̄(2)(r, r′, t)F (r − r′) d3r ′

+ ∇ ·
∫

K(t − t ′)
√

ρ̂(r, t ′)ξ(r, t ′) dt ′. (19)

The delta function term in (18) leads to a term containing F (0) = −∇V (r)|r=0, namely the
force between particles when the centres are at zero separation. We assume that this is zero
[5]. Equation (19) is exact when G does not change over time or when it only changes on
time scales much longer than τ , the support of K(t). However, in this form equation (19) is
of little use, since the right-hand side involves ρ̂(r, t) explicitly. In the following, we give
a number of ‘hand-waving’ arguments in which we approximate the right-hand side in terms
of ρ̄(r, t) only. These arguments are far from being rigorous and are by no means a proper
derivation of a DDFT for ρ̄(r, t). The reason for giving these arguments is that they lead to a
stochastic time evolution equation for ρ̄(r, t) which has the same form as the time evolution
equation of ρ(r, t), i.e. (15), but with an additional conserved noise term. In [6] Kawasaki
uses a more formal spatial coarse graining procedure and in [18] Pérez-Madrid et al use a
mesoscopic approach to obtain a similar result.
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The time integration in the last term of equation (19) in principle leads to a non-
Markovian time evolution for ρ̄(r, t), with the amplitude of the noise term dependent on
the characteristic time, τ , of the resolution function K(t). If τ is sufficiently long, then the
amplitude of the noise term in (19) will be negligible and (19) reduces to an equation of
the same form as (11) and the theory becomes equivalent to that for the ensemble averaged
density of the previous section. For smaller values of τ , the noise term in (19) will still be
significant. In this situation, on time scales large as compared to τ , the dynamics of ρ̄(r, t)

should be approximately Markovian and, without strict justification we write the last term of
equation (19) in the same form as in (3), but with ρ̂(r, t) replaced by ρ̄(r, t) and an amplitude
proportional to

√
τ0/τ , where τ0 is a microscopic time scale. For large but finite τ we have a

time evolution equation identical to (11) but with an additional multiplicative noise term

∂ρ̄(r, t)

∂t
= −∇ ·

{
[G(r, t) − T ∇]ρ̄(r, t) +

∫
ρ̄(2)(r, r′, t)F (r − r′) d3r ′

−∇ ·
√

ρ̄(r, t)

√
τ0

τ
ξ(r, t)

}
. (20)

Using the local equilibrium assumption applied in section 3, we assume equation (14) with ρ

replaced by ρ̄ and ρ(2) replaced by ρ̄(2) applies for the non-equilibrium coarse grained density
distributions, and we substitute the term involving ρ̄(2)(r, r′, t) in (20) by a term involving
the functional derivative of the excess part of the Helmholtz free energy functional, to obtain
a stochastic version of (15):

∂ρ̄(r, t)

∂t
= ∇ ·

[
ρ̄(r, t)∇ δF[ρ̄(r, t)]

δρ̄(r, t)
+

√
ρ̄(r, t)

√
τ0

τ
ξ(r, t)

]
. (21)

Note the similarity with the time evolution equation (6) for the instantaneous microscopic
density ρ̂(r, t). However, a significant difference is that it is the Helmholtz free energy
functional, F[ρ̄], given by equation (16) with ρ replaced by ρ̄, that enters into equation (21)5,
whereas H[ρ̂] entering equation (6) is simply the functional as defined in (5). Unfortunately,
in [7], this distinction is not made clear. In developing (21) we followed path 6 in figure 1.
We can obtain the Fokker–Planck equation corresponding to equation (21) by discretizing it in
space. Taking the continuum limit of the Fokker–Planck equation for the discretized Langevin
equation [3, 12], we obtain an equation very similar to (9):

∂W̄ [ρ̄]

∂t
= −

∫
δ

δρ̄(r, t)

{
∇ · ρ̄(r, t)∇

[
T

√
τ0

τ

δ

δρ̄(r, t)
+

δF[ρ̄]

δρ̄(r, t)

]
W̄ [ρ̄]

}
d3r. (22)

This calculation corresponds to path 8 in figure 1. The equilibrium distribution corresponding
to (22) is given by W̄ (eq)[ρ̄] ∝ exp

[− 1
T

√
τ
τ0

(F[ρ̄] + µρ̄)
]

with an arbitrary chemical potential
µ. This result justifies a posteriori our, initially unjustified, approximation for the noise
term in (19), which we used to obtain (21). Note that the time coarse graining reduces the
fluctuations by an amount corresponding to a smaller temperature T

√
τ0
τ

. However, the free
energy functional F[ρ̄] is that for the given temperature T (see footnote 5).

In this section, we considered the temporally coarse grained density ρ̄(r, t) because we
wished to make a comparison with the DDFT obtained for the ensemble averaged density
ρ(r, t) in the previous section, which is used to describe the time evolution of the structure
of the system at microscopic length scales. We wish to emphasize that the derivation was by
no means rigorous. However, a spatial coarse graining of (9) can also lead to an equation of

5 More strictly, we expect the free energy functional in (21) to be a coarse grained free energy functional, F̄[ρ̄]. We
are making the approximation F̄[ρ̄] � F[ρ̄]. See [19] for a recent discussion of the difference between these free
energy functionals.
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the same form as (22) but with a particular (approximate) form for the Helmholtz free energy
functional—see [6]. This last route follows path 7 in figure 1.

5. Discussion

In sections 2 and 4, we derived stochastic DDFTs (Langevin equations) for the instantaneous
microscopic density ρ̂(r, t), equation (6), and the coarse grained density ρ̄(r, t),
equation (21), respectively, as well as the corresponding Fokker–Planck equations. In
section 3, we also derived a deterministic DDFT, equation (15), for the ensemble (or noise)
averaged density ρ(r, t). The equations for the instantaneous microscopic density ρ̂(r, t)

are of little use because ρ̂(r, t) directly encodes the positions of all particles (modulo
permutations); it is simpler in this case to follow the particle trajectories directly by integrating
equation (1). But, depending on the situation one is trying to describe, it can be reasonable
to consider either the coarse grained density ρ̄(r, t) or the ensemble averaged density ρ(r, t).
In fact, their time evolution equations, (21) and (15) respectively, are identical except for the
additional noise term in (21). Both (approximate) equations are consistent with equilibrium
thermodynamics. The equilibrium value of ρ(r, t) (i.e. in the limit t → ∞ for a time-
independent external potential), which we denote by ρ(r), is correctly given by the stationary
point of the Helmholtz free energy functional δF[ρ]

δρ(r)
= µ [8, 10, 1]. This stationary density

ρ(r) is also the density with the highest probability in the stationary distribution of the coarse
grained density W̄ (eq)[ρ̄], independent of the choice of coarse graining time scale τ . Note that
for τ → ∞, W̄ (eq)[ρ̄] becomes sharply peaked at ρ(r). For finite τ coarse graining W̄ (eq)[ρ̄]
has a finite width due to thermal fluctuations. For non-interacting particles, as pointed out
in [8], the deterministic DDFT in equation (15) reduces to the (exact) drift–diffusion
equation for Brownian particles in an external potential. These observations suggest that
the DDFT provides a good approximation to the exact time evolution of the particle density,
particularly when the system is either close to equilibrium or when the particles interact
weakly.

We ought to re-iterate that our approach in section 4 is not intended to provide a rigorous
derivation of a stochastic DDFT, rather we aim to point out that one can use a temporal
coarse graining to arrive at a stochastic density functional theory, equation (22), similar to
that obtained in [6] via a different spatial coarse graining. The main difficulty in rigorously
deriving a coarse grained DDFT is to express the coarse grained two-body density distribution
function ρ̄(2)(r, r′) as a functional of the one-body density. By varying the coarse graining
parameter τ between zero and infinity, in principle one should be able to go smoothly from
the microscopic dynamics in equation (6) to a deterministic DDFT for the ensemble averaged
density. We expect that the intermediate equations of motion should have a form similar to
(21), but with a τ -dependent, partially coarse grained free energy functional. However, since
we do not know of any formal procedure for obtaining such a functional, as an approximation
for large τ , we propose using the free energy functionals from equilibrium density functional
theory [2].

We believe that the origin of the debate as to whether the DDFT should be a stochastic
or deterministic equation is a matter of confusion between the three types of densities defined
in this paper. In particular, the distinction between the instantaneous microscopic density
ρ̂(r, t) and the coarse grained density ρ̄(r, t) is of great importance, as noted also in [15]. The
confusion is most apparent in a recent contribution to the field [7]. In this paper, the Langevin
and Fokker–Planck equation for ρ̂(r, t), namely (3) and (9), respectively, are derived correctly,
but then the microscopic instantaneous density ρ̂(r, t), which is a sum of delta functions, is
confused with the coarse grained density ρ̄(r, t). In addition to this confusion there is, in [7],
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a lack of a clear distinction between the functional H[ρ̂] and the free energy functional F[ρ̄].
Bearing in mind the results from equilibrium density functional theory [1, 2] this distinction
should be evident immediately.

The authors of [7] argue that a DDFT must be stochastic in nature. This misconception
has its roots in [5] where the difference between ρ̂(r, t) and ρ̄(r, t) is not, in our view,
expounded sufficiently clearly. This difference is further obscured by the fact that the time
evolution equation for the spatially coarse grained density derived in [6] involves a free energy
functional whose form is strikingly similar to H[ρ̂] in (5). However, the crucial difference
is that (5) contains the bare pair interaction potential while the functional derived in [6]
contains the direct pair correlation function, instead of V (r), and therefore leads to the proper
thermodynamic equilibrium state. We wish to emphasize that a DDFT for ρ(r, t), the density
distribution averaged over all realizations of the stochastic noise, must be deterministic.

In summary, one can justify both a stochastic as well as a deterministic DDFT, depending
on the quantities of interest. In this sense, there is a confusion rather than a controversy about
the nature of DDFT.
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